A new type of immune cell which kills most cancers has been discovered by accident by British scientists, in a finding which could herald a major breakthrough in treatment.
Researchers at Cardiff University were analysing blood from a bank in Wales, looking for immune cells that could fight bacteria, when they found an entirely new type of T-cell.
That new immune cell carries a never-before-seen receptor which acts like a grappling hook, latching on to most human cancers, while ignoring healthy cells.
In laboratory studies, immune cells equipped with the new receptor were shown to kill lung, skin, blood, colon, breast, bone, prostate, ovarian, kidney and cervical cancer.
Professor Andrew Sewell, lead author on the study and an expert in T-cells from Cardiff University’s School of Medicine, said it was “highly unusual” to find a cell that had broad cancer-fighting therapies, and raised the prospect of a universal therapy.
“This was a serendipitous finding, nobody knew this cell existed,” Prof Sewell told The Telegraph.
“Our finding raises the prospect of a ‘one-size-fits-all’ cancer treatment, a single type of T-cell that could be capable of destroying many different types of cancers across the population. Previously nobody believed this could be possible.”
[…]
the new cell attaches to a molecule on cancer cells called MR1, which does not vary in humans.
It means that not only would the treatment work for most cancers, but it could be shared between people, raising the possibility that banks of the special immune cells could be created for instant ‘off-the-shelf’ treatment in future.
When researchers injected the new immune cells into mice bearing human cancer and with a human immune system, they found ‘encouraging’ cancer-clearing results.
And they showed that T-cells of skin cancer patients, which were modified to express the new receptor, could destroy not only the patient’s own cancer cells, but also other patients’ cancer cells in the laboratory.
[…]
Professor Awen Gallimore, of the University’s division of infection and immunity and cancer immunology lead for the Wales Cancer Research Centre, added: “If this transformative new finding holds up, it will lay the foundation for a ‘universal’ T-cell medicine, mitigating against the tremendous costs associated with the identification, generation and manufacture of personalised T-cells.
“This is truly exciting and potentially a great step forward for the accessibility of cancer immunotherapy.”
Commenting on the study, Daniel Davis, Professor of Immunology at the University of Manchester, said it was an exciting discovery which opened the door to cellular therapies being used for more people.
“We are in the midst of a medical revolution harnessing the power of the immune system to tackle cancer. But not everyone responds to the current therapies and there can be harmful side-effects.
“The team have convincingly shown that, in a lab dish, this type of immune cell reacts against a range of different cancer cells.
“We still need to understand exactly how it recognises and kills cancer cells, while not responding to normal healthy cells.”
The research was published in the journal Nature Immunology.
Robin Edgar
Organisational Structures | Technology and Science | Military, IT and Lifestyle consultancy | Social, Broadcast & Cross Media | Flying aircraft