Microcomb chips help pave the way for thousand times more accurate GPS systems

Today, our mobile phones, computers, and GPS systems can give us very accurate time indications and positioning thanks to the over 400 atomic clocks worldwide. All sorts of clocks — be it mechanical, atomic or a smartwatch — are made of two parts: an oscillator and a counter. The oscillator provides a periodic variation of some known frequency over time while the counter counts the number of cycles of the oscillator. Atomic clocks count the oscillations of vibrating atoms that switch between two energy states with very precise frequency.

Most atomic clocks use microwave frequencies to induce these energy oscillations in atoms. In recent years, researchers in the field have explored the possibility of using laser instead to induce oscillations optically. Just like a ruler with a great number of ticks per centimeter, optical atomic clocks make it possible to divide a second into even more time fractions, resulting in thousands of times more accurate time and position indications.

“Today’s atomic clocks enable GPS systems with a positional accuracy of a few meters. With an optical atomic clock, you may achieve a precision of just a few centimeters.

[…]

The core of the new technology, described in a recently published research article in Nature Photonics, are small, chip-based devices called microcombs. Like the teeth of a comb, microcombs can generate a spectrum of evenly distributed light frequencies.

“This allows one of the comb frequencies to be locked to a laser frequency that is in turn locked to the atomic clock oscillation,” says Minghao Qi.

[…]

the minimal size of the microcomb makes it possible to shrink the atomic clock system significantly while maintaining its extraordinary precision,”

[…]

Another major obstacle has been achieving simultaneously the “self-reference” needed for the stability of the overall system and aligning the microcomb’s frequencies exactly with the atomic clock’s signals.

“It turns out that one microcomb is not sufficient, and we managed to solve the problem by pairing two microcombs, whose comb spacings, i.e. frequency interval between adjacent teeth, are close but with a small offset, e.g. 20 GHz. This 20 GHz offset frequency will serve as the clock signal that is electronically detectable. In this way, we could get the system to transfer the exact time signal from an atomic clock to a more accessible radio frequency, ”

[…]

“Photonic integration technology makes it possible to integrate the optical components of optical atomic clocks, such as frequency combs, atomic sources and lasers, on tiny photonic chips in micrometer to millimeter sizes, significantly reducing the size and weight of the system,” says Dr. Kaiyi Wu.

The innovation could pave the way for mass production, making optical atomic clocks more affordable and accessible for a range of applications in society and science. The system that is required to “count” the cycles of an optical frequency requires many components besides the microcombs, such as modulators, detectors and optical amplifiers. This study solves an important problem and shows a new architecture, but the next steps are to bring all the elements necessary to create a full system on a chip.

[…]

Source: Microcomb chips help pave the way for thousand times more accurate GPS systems | ScienceDaily

Robin Edgar

Organisational Structures | Technology and Science | Military, IT and Lifestyle consultancy | Social, Broadcast & Cross Media | Flying aircraft

 robin@edgarbv.com  https://www.edgarbv.com