The minute details of rogue drone’s movements in the air may unwittingly reveal the drone pilot’s location—possibly enabling authorities to bring the drone down before, say, it has the opportunity to disrupt air traffic or cause an accident. And it’s possible without requiring expensive arrays of radio triangulation and signal-location antennas.
So says a team of Israeli researchers who have trained an AI drone-tracking algorithm to reveal the drone operator’s whereabouts, with a better than 80 per cent accuracy level. They are now investigating whether the algorithm can also uncover the pilot’s level of expertise and even possibly their identity.
[…]
Depending on the specific terrain at any given airport, a pilot operating a drone near a camouflaging patch of forest, for instance, might have an unobstructed view of the runway. But that location might also be a long distance away, possibly making the operator more prone to errors in precise tracking of the drone. Whereas a pilot operating nearer to the runway may not make those same tracking errors but may also have to contend with big blind spots because of their proximity to, say, a parking garage or control tower.
And in every case, he said, simple geometry could begin to reveal important clues about a pilot’s location, too. When a drone is far enough away, motion along a pilot’s line of sight can be harder for the pilot to detect than motion perpendicular to their line of sight. This also could become a significant factor in an AI algorithm working to discover pilot location from a particular drone flight pattern.
The sum total of these various terrain-specific and terrain-agnostic effects, then, could be a giant finger pointing to the operator. This AI application would also be unaffected by any relay towers or other signal spoofing mechanisms the pilot may have put in place.
Weiss said his group tested their drone tracking algorithm using Microsoft Research’s open source drone and autonomous vehicle simulator AirSim. The group presented their work-in-progress at the Fourth International Symposium on Cyber Security, Cryptology and Machine Learning at Ben-Gurion University earlier this month.
Their paper boasts a 73 per cent accuracy rate in discovering drone pilots’ locations. Weiss said that in the few weeks since publishing that result, they’ve now improved the accuracy rate to 83 per cent.
Now that the researchers have proved the algorithm’s concept, Weiss said, they’re hoping next to test it in real-world airport settings. “I’ve already been approached by people who have the flight permissions,” he said. “I am a university professor. I’m not a trained pilot. Now people that do have the facility to fly drones [can] run this physical experiment.”
Source: Attention Rogue Drone Pilots: AI Can See You! – IEEE Spectrum
Robin Edgar
Organisational Structures | Technology and Science | Military, IT and Lifestyle consultancy | Social, Broadcast & Cross Media | Flying aircraft