How to jam neural networks

Sponge Examples: Energy-Latency Attacks on Neural Networks shows how to find adversarial examples that cause a DNN to burn more energy, take more time, or both. They affect a wide range of DNN applications, from image recognition to natural language processing (NLP). Adversaries might use these examples for all sorts of mischief – from draining mobile phone batteries, though degrading the machine-vision systems on which self-driving cars rely, to jamming cognitive radar.

So far, our most spectacular results are against NLP systems. By feeding them confusing inputs we can slow them down over 100 times. There are already examples in the real world where people pause or stumble when asked hard questions but we now have a dependable method for generating such examples automatically and at scale. We can also neutralize the performance improvements of accelerators for computer vision tasks, and make them operate on their worst case performance.

One implication is that engineers designing real-time systems that use machine learning will have to pay more attention to worst-case behaviour; another is that when custom chips used to accelerate neural network computations use optimisations that increase the gap between worst-case and average-case outcomes, you’d better pay even more attention.

Source: How to jam neural networks | Light Blue Touchpaper

Robin Edgar

Organisational Structures | Technology and Science | Military, IT and Lifestyle consultancy | Social, Broadcast & Cross Media | Flying aircraft

 robin@edgarbv.com  https://www.edgarbv.com