A team of researchers from the National University of Singapore (NUS) have made a serendipitous scientific discovery that could potentially revolutionize the way water is broken down to release hydrogen gas—an element crucial to many industrial processes.
The team, led by Associate Professor Xue Jun Min, Dr. Wang Xiaopeng and Dr. Vincent Lee Wee Siang from the Department of Materials Science and Engineering under the NUS College of Design and Engineering (NUS CDE), found that light can trigger a new mechanism in a catalytic material used extensively in water electrolysis, where water is broken down into hydrogen and oxygen. The result is a more energy-efficient method of obtaining hydrogen.
[…]
“We discovered that the redox center for electro-catalytic reaction is switched between metal and oxygen, triggered by light,” said Assoc. Prof. Xue. “This largely improves the water electrolysis efficiency.”
[…]
an accidental power trip of the ceiling lights in his laboratory almost three years ago allowed them to observe something that the global scientific community has not yet managed to do.
Back then, the ceiling lights in Assoc. Prof. Xue’s research lab were usually turned on for 24 hours. One night in 2019, the lights went off due to a power trip. When the researchers returned the next day, they found that the performance of a nickel oxyhydroxide-based material in the water electrolysis experiment, which had continued in the dark, had fallen drastically.
“This drop in performance, nobody has ever noticed it before, because no one has ever done the experiment in the dark,” said Assoc. Prof. Xue. “Also, the literature says that such a material shouldn’t be sensitive to light; light should not have any effect on its properties.”
[…]
With their findings, the team is now working on designing a new way to improve industrial processes to generate hydrogen. Assoc. Prof. Xue is suggesting making the cells containing water to be transparent, so as to introduce light into the water splitting process.
“This should require less energy in the electrolysis process, and it should be much easier using natural light,” said Assoc. Prof. Xue. “More hydrogen can be produced in a shorter amount of time, with less energy consumed.”
[…]
More information: Xiaopeng Wang et al, Pivotal role of reversible NiO6 geometric conversion in oxygen evolution, Nature (2022). DOI: 10.1038/s41586-022-05296-7
Source: Revolutionary technique to generate hydrogen more efficiently from water
Robin Edgar
Organisational Structures | Technology and Science | Military, IT and Lifestyle consultancy | Social, Broadcast & Cross Media | Flying aircraft