Scientists grow human brain cells to play Pong

Researchers have succeeded in growing brain cells in a lab and hooking them up to electronic connectors proving they can learn to play the seminal console game Pong.

Led by Brett Kagan, chief scientific officer at Cortical Labs, the researchers showed that by integrating neurons into digital systems they could harness “the inherent adaptive computation of neurons in a structured environment”.

According to the paper published in the journal Neuron, the biological neural networks grown from human or rodent origins were integrated with computing hardware via a high-density multielectrode array.

“Through electrophysiological stimulation and recording, cultures are embedded in a simulated game-world, mimicking the arcade game Pong.

“Applying implications from the theory of active inference via the free energy principle, we find apparent learning within five minutes of real-time gameplay not observed in control conditions,” the paper said. “Further experiments demonstrate the importance of closed-loop structured feedback in eliciting learning over time.”

[…]

Researchers have succeeded in growing brain cells in a lab and hooking them up to electronic connectors proving they can learn to play the seminal console game Pong.

Led by Brett Kagan, chief scientific officer at Cortical Labs, the researchers showed that by integrating neurons into digital systems they could harness “the inherent adaptive computation of neurons in a structured environment”.

According to the paper published in the journal Neuron, the biological neural networks grown from human or rodent origins were integrated with computing hardware via a high-density multielectrode array.

“Through electrophysiological stimulation and recording, cultures are embedded in a simulated game-world, mimicking the arcade game Pong.

“Applying implications from the theory of active inference via the free energy principle, we find apparent learning within five minutes of real-time gameplay not observed in control conditions,” the paper said. “Further experiments demonstrate the importance of closed-loop structured feedback in eliciting learning over time.”

[…]

https://www.theregister.com/2022/10/14/boffins_grow_human_brain_cells/

Robin Edgar

Organisational Structures | Technology and Science | Military, IT and Lifestyle consultancy | Social, Broadcast & Cross Media | Flying aircraft

 robin@edgarbv.com  https://www.edgarbv.com